
Mechanics
- State the parallelogram law of vector addition. Derive the expression for the magnitude and direction of the resultant of two vectors inclined at an angle q from each other.
- State triangle law of vector addition. Obtain an expression for the resultant of two vectors P and Q inclined at angle q.
- Define projectile. Show that the path of projectile projected horizontally from the top of tower is parabolic. At what angle does it hit on the ground?
- A projectile is fired with a velocity v and making an angle q with the horizontal Derive expression for (a) maximum height (b) Time of flight (c) horizontal range. Also find the condition for maximum horizontal range.
- State and prove the principle of conservation of linear momentum.
- Derive Newton's first law and third law of motion from Newton second law of motion.
- What is the angle of repose? Show that when a body just begins to slide down on an inclined plane, the coefficient of friction is equal to the tangent of angle of inclination of the plane.
- Define work. Derive an expression to calculate work done by a variable force.
- What is the principle of conservation of energy? Show that total mechanical energy of a body is conserved when it moves under the action of gravitational field.
- What is elastic collision? Prove that the colliding objects exchange their velocities in one dimensional elastic collision.
- Define centripetal force. Show that the acceleration of body moving in a circular path of radius 'r' with uniform speed v is and is directed towards the Centre of circle.
- What is conical pendulum? Show that the period of oscillation of this pendulum is given by T= 2p, where symbols have their usual meanings.
- What do you mean by the banking of a curved path? Derive an expression for the banking angle.
- Derive an expression for the variation of acceleration due to gravity of the earth with the altitude and explain its meaning.
- What is a gravitational potential energy? Obtain an expression for the gravitational. Potential energy of a body at a distance r from the Centre of the earth.
- Define escape velocity. Find an expression for the escape velocity from the surface of the earth.
- What do you mean by parking orbit? Derive an expression for the orbital. Velocity and hence find time period of the satellite revolving around the earth.
- Explain the concept of geostationary satellite. Find an expression for the total energy of the moon revolving around the earth.
HEAT
- Define linear and superficial expansivities of solids. Show that β=2a, where notation has usual meaning.
- Define coefficient of linear and cubical expansion of solid and establish relation between them.
- Define linear and cubical expansivities of solids. Derive an expression for the variation in density of a solid when its temperature is raised from q1°C to q2°C.
- Describe a method to determine the linear expansivity of a solid. Can the cubical expansivity be derived from this value?
- Define the coefficient of real and apparent expansion of liquid and derive the relation between them.
- Distinguish between real and apparent expansion of liquid. Describe with mathematical detail, a method to determine real expansivity of a liquid.
- Define thermal heat capacity of substance. Describe the method of mixture to determine the specific heat capacity of a solid.
- State and explain Newton's law of cooling and derive the expression for the specific heat of the liquid by method of cooling.
- Define latent heat of fusion of ice. Describe the method for the measurement of it in the laboratory.
- What is latent heat of vaporization of water? Develop an expression for the determination of the latent heat of vaporization of water.
- Define Boyle's and Charle's law. Prove PV = nRT.
- On the basis of kinetic theory of gases, deduce the relation, P =, where the symbols have their usual meanings.
- Starting from the relation P = in kinetic theory of gases, derive Boyle’s law and Charle’s law and ideal gas equation.
- Define the coefficient of thermal conductivity. Describe Searle’s method of determination of thermal conductivity of a good conductor.
- What do you mean by perfectly black body? State and explain Stefan’s law of black body radiation.
Ray Optics
- How will you make difference between real and virtual images? Obtain an expression for the relation between object distance, image distance and the focal length in case of convex mirror.
- Prove that , for concave mirror when image formed is virtual / real where u, v and f have usual meanings.
- What is lateral shift? Derive an expression for its value. How does the lateral shift change with the increase in the angle of incidence?
- What do you mean by minimum deviation of light when passing through a prism? Show that the deviation produced by a small angle prism is independence of angle of incidence.
- Show that m= , for a prism Where the notations carry their usual meanings.
- Derive lens maker's formula and write unit of the power of a lens.
- Define an expression for combined focal length when two thin lenses are combined coaxially.
- What is chromatic aberration? Show that for a lens, the chromatic aberration is the product of dispersive power and focal length of mean light.
- Define achromatism and derive an expression for the condition of achromatic combination of two thin lenses in contact.
Electrostatics
- What is electrostatic Induction? How can you charge a given Sphere positively by the method of Induction?
- What is an electric potential? Derive the formula for the potential at a point due to a point charge.
- State Gauss’s Theorem is electrostatics and uses it to find the electric field intensity due to hollow charged spherical conductor?
- State and explain Gauss law of electrostatics. Apply it to obtain an expression for electric field of a linearly charged body?
- State Gauss law. Use it to find the electric field due to an infinite thin plan metallic sheet.
- Define potential gradient. Derive a relation between electric field intensity and potential gradient.
- Define electric potential. Derive an expression for the potential difference formula and hence obtain the potential at point due to a point charge.
- What do you mean by the term capacitance? Find the equivalent capacitance of two capacitor, when they are connected in i) series ii) parallel
- Define capacitance of a capacitor. Deduce an expression for the capacitance of a parallel plate capacitor.
- What is a capacitor? Find an expression for the energy stored in a charged capacitor.
<div class="separator" style="color: rgb(0, 0, 0); font-family: "Times New Roman"; clear: both; text-align: center;"><a imageanchor="1" href="https://lh3.googleusercontent.com/d/1tRvTxAJBRxhcbtfl4oDDm2xJgz4pb68Z=s1600" style="margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="400" data-original-width="1600" height="151" width="609" src="https://lh3.googleusercontent.com/d/1tRvTxAJBRxhcbtfl4oDDm2xJgz4pb68Z=w609-h151" alt="neb-resource-app-class-11-important-questions" title="Class 11 important questions for board exam" style="cursor: move;"></a></div><br style="color: rgb(0, 0, 0); font-family: "Times New Roman";"><div class="pS post-body postBody" id="postBody" style="color: rgb(0, 0, 0); font-family: "Times New Roman";"><br><h1 data-original-attrs="{"style":""}" id="Mechanics" style="text-align: center;"><b>Mechanics</b></h1><ol><li>State the parallelogram law of vector addition. Derive the expression for the magnitude and direction of the resultant of two vectors inclined at an angle <font data-keep-original-tag="false" data-original-attrs="{"style":"mso-ascii-font-family: Calibri; mso-ascii-theme-font: minor-latin; mso-char-type: symbol; mso-hansi-font-family: Calibri; mso-hansi-theme-font: minor-latin; mso-symbol-font-family: Symbol;"}" face="Symbol">q</font> from each other.</li><li>State triangle law of vector addition. Obtain an expression for the resultant of two vectors P and Q inclined at angle <font data-keep-original-tag="false" data-original-attrs="{"style":"mso-ascii-font-family: Calibri; mso-ascii-theme-font: minor-latin; mso-char-type: symbol; mso-hansi-font-family: Calibri; mso-hansi-theme-font: minor-latin; mso-symbol-font-family: Symbol;"}" face="Symbol">q</font>.</li><li>Define projectile. Show that the path of projectile projected horizontally from the top of tower is parabolic. At what angle does it hit on the ground?</li><li>A projectile is fired with a velocity v and making an angle <font data-keep-original-tag="false" data-original-attrs="{"style":"mso-ascii-font-family: Calibri; mso-ascii-theme-font: minor-latin; mso-char-type: symbol; mso-hansi-font-family: Calibri; mso-hansi-theme-font: minor-latin; mso-symbol-font-family: Symbol;"}" face="Symbol">q</font> with the horizontal Derive expression for (a) maximum height (b) Time of flight (c) horizontal range. Also find the condition for maximum horizontal range.</li><li>State and prove the principle of conservation of linear momentum.</li><li>Derive Newton's first law and third law of motion from Newton second law of motion.</li><li>What is the angle of repose? Show that when a body just begins to slide down on an inclined plane, the coefficient of friction is equal to the tangent of angle of inclination of the plane.</li><li>Define work. Derive an expression to calculate work done by a variable force.</li><li>What is the principle of conservation of energy? Show that total mechanical energy of a body is conserved when it moves under the action of gravitational field.</li><li>What is elastic collision? Prove that the colliding objects exchange their velocities in one dimensional elastic collision.</li><li>Define centripetal force. Show that the acceleration of body moving in a circular path of radius 'r' with uniform speed v is <span class="MathJax CtxtMenu_Attached_0" data-original-attrs="{"ctxtmenu_counter":"0","jax":"CHTML","style":""}" data-original-tag="MJX-CONTAINER" tabindex="0" style="font-size: 19.04px; position: relative;"><span class="MJX-TEX" data-original-attrs="{"aria-hidden":"true"}" data-original-tag="MJX-MATH"><span data-original-tag="MJX-MFRAC"><span data-original-tag="MJX-FRAC"><span data-original-tag="MJX-NUM"><span data-original-tag="MJX-NSTRUT"></span><span data-original-attrs="{"size":"s","texclass":"ORD"}" data-original-tag="MJX-TEXATOM"><span data-original-attrs="{"texclass":"ORD"}" data-original-tag="MJX-TEXATOM"><span data-original-tag="MJX-MSUP"><span class="mjx-i" data-original-tag="MJX-MI"><span class="mjx-c1D463 TEX-I" data-original-tag="MJX-C"></span></span><span data-original-attrs="{"style":""}" data-original-tag="MJX-SCRIPT" style="vertical-align: 0.363em;"><span class="mjx-n" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MN"><span class="mjx-c32" data-original-tag="MJX-C"></span></span></span></span></span></span></span><span data-original-tag="MJX-DBOX"><span data-original-tag="MJX-DTABLE"><span data-original-tag="MJX-LINE"></span><span data-original-tag="MJX-ROW"><span data-original-tag="MJX-DEN"><span data-original-tag="MJX-DSTRUT"></span><span class="mjx-i" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MI"><span class="mjx-c1D45F TEX-I" data-original-tag="MJX-C"></span></span></span></span></span></span></span></span></span><span data-original-attrs="{"display":"inline","unselectable":"on"}" data-original-tag="MJX-ASSISTIVE-MML"><span data-original-attrs="{"xmlns":"http://www.w3.org/1998/Math/MathML"}" data-original-tag="MATH"><span data-original-tag="MFRAC"><span data-original-attrs="{"data-mjx-texclass":"ORD"}" data-original-tag="MROW"><span data-original-attrs="{"data-mjx-texclass":"ORD"}" data-original-tag="MROW"><span data-original-tag="MSUP"><span data-original-tag="MI">v</span><span data-original-tag="MN">2</span></span></span></span><span data-original-tag="MI">r</span></span></span></span></span> and is directed towards the Centre of circle.</li><li>What is conical pendulum? Show that the period of oscillation of this pendulum is given by T= 2<font data-keep-original-tag="false" data-original-attrs="{"style":"mso-ascii-font-family: Calibri; mso-ascii-theme-font: minor-latin; mso-char-type: symbol; mso-hansi-font-family: Calibri; mso-hansi-theme-font: minor-latin; mso-symbol-font-family: Symbol;"}" face="Symbol">p</font><span class="MathJax CtxtMenu_Attached_0" data-original-attrs="{"ctxtmenu_counter":"1","jax":"CHTML","style":""}" data-original-tag="MJX-CONTAINER" tabindex="0" style="font-size: 19.04px; position: relative;"><span class="MJX-TEX" data-original-attrs="{"aria-hidden":"true"}" data-original-tag="MJX-MATH"><span data-original-tag="MJX-MSQRT"><span data-original-tag="MJX-SQRT"><span data-original-tag="MJX-SURD"><span class="mjx-lop" data-original-tag="MJX-MO"><span class="mjx-c221A TEX-S2" data-original-tag="MJX-C"></span></span></span><span data-original-attrs="{"style":""}" data-original-tag="MJX-BOX" style="padding-top: 0.216em;"><span data-original-tag="MJX-MFRAC"><span data-original-tag="MJX-FRAC"><span data-original-tag="MJX-NUM"><span data-original-tag="MJX-NSTRUT"></span><span data-original-attrs="{"size":"s","texclass":"ORD"}" data-original-tag="MJX-TEXATOM"><span class="mjx-i" data-original-tag="MJX-MI"><span class="mjx-c1D459 TEX-I" data-original-tag="MJX-C"></span></span><span class="mjx-n" data-original-attrs="{"space":"2"}" data-original-tag="MJX-MI"><span class="mjx-c63" data-original-tag="MJX-C"></span><span class="mjx-c6F" data-original-tag="MJX-C"></span><span class="mjx-c73" data-original-tag="MJX-C"></span></span><span class="mjx-n" data-original-tag="MJX-MO"><span class="mjx-c2061" data-original-tag="MJX-C"></span></span><span class="mjx-i" data-original-attrs="{"space":"2"}" data-original-tag="MJX-MI"><span class="mjx-c1D703 TEX-I" data-original-tag="MJX-C"></span></span></span></span><span data-original-tag="MJX-DBOX"><span data-original-tag="MJX-DTABLE"><span data-original-tag="MJX-LINE"></span><span data-original-tag="MJX-ROW"><span data-original-tag="MJX-DEN"><span data-original-tag="MJX-DSTRUT"></span><span class="mjx-i" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MI"><span class="mjx-c1D454 TEX-I" data-original-tag="MJX-C"></span></span></span></span></span></span></span></span></span></span></span></span><span data-original-attrs="{"display":"inline","unselectable":"on"}" data-original-tag="MJX-ASSISTIVE-MML"><span data-original-attrs="{"xmlns":"http://www.w3.org/1998/Math/MathML"}" data-original-tag="MATH"><span data-original-tag="MSQRT"><span data-original-tag="MFRAC"><span data-original-attrs="{"data-mjx-texclass":"ORD"}" data-original-tag="MROW"><span data-original-tag="MI">l</span><span data-original-tag="MI">cos</span><span data-original-attrs="{"data-mjx-texclass":"NONE"}" data-original-tag="MO"></span><span data-original-tag="MI">θ</span></span><span data-original-tag="MI">g</span></span></span></span></span></span>, where symbols have their usual meanings.</li><li>What do you mean by the banking of a curved path? Derive an expression for the banking angle.</li><li>Derive an expression for the variation of acceleration due to gravity of the earth with the altitude and explain its meaning.</li><li>What is a gravitational potential energy? Obtain an expression for the gravitational. Potential energy of a body at a distance r from the Centre of the earth.</li><li>Define escape velocity. Find an expression for the escape velocity from the surface of the earth.</li><li>What do you mean by parking orbit? Derive an expression for the orbital. Velocity and hence find time period of the satellite revolving around the earth.</li><li>Explain the concept of geostationary satellite. Find an expression for the total energy of the moon revolving around the earth.</li></ol><h1 data-original-attrs="{"style":""}" id="HEAT" style="text-align: center;"><b>HEAT</b></h1><p class="MsoNormal" data-original-attrs="{"style":""}" style="text-align: justify;"></p><ol><li>Define linear and superficial expansivities of solids. Show that β=2<font data-keep-original-tag="false" data-original-attrs="{"style":"mso-ascii-font-family: Calibri; mso-ascii-theme-font: minor-latin; mso-char-type: symbol; mso-hansi-font-family: Calibri; mso-hansi-theme-font: minor-latin; mso-symbol-font-family: Symbol;"}" face="Symbol">a</font>, where notation has usual meaning.</li><li>Define coefficient of linear and cubical expansion of solid and establish relation between them.</li><li>Define linear and cubical expansivities of solids. Derive an expression for the variation in density of a solid when its temperature is raised from <font data-keep-original-tag="false" data-original-attrs="{"style":"mso-ascii-font-family: Calibri; mso-ascii-theme-font: minor-latin; mso-char-type: symbol; mso-hansi-font-family: Calibri; mso-hansi-theme-font: minor-latin; mso-symbol-font-family: Symbol;"}" face="Symbol">q</font><sub>1</sub>°C to <font data-keep-original-tag="false" data-original-attrs="{"style":"mso-ascii-font-family: Calibri; mso-ascii-theme-font: minor-latin; mso-char-type: symbol; mso-hansi-font-family: Calibri; mso-hansi-theme-font: minor-latin; mso-symbol-font-family: Symbol;"}" face="Symbol">q</font><sub>2</sub>°C.</li><li>Describe a method to determine the linear expansivity of a solid. Can the cubical expansivity be derived from this value?</li><li>Define the coefficient of real and apparent expansion of liquid and derive the relation between them.</li><li>Distinguish between real and apparent expansion of liquid. Describe with mathematical detail, a method to determine real expansivity of a liquid.</li><li>Define thermal heat capacity of substance. Describe the method of mixture to determine the specific heat capacity of a solid.</li><li>State and explain Newton's law of cooling and derive the expression for the specific heat of the liquid by method of cooling.</li><li>Define latent heat of fusion of ice. Describe the method for the measurement of it in the laboratory.</li><li>What is latent heat of vaporization of water? Develop an expression for the determination of the latent heat of vaporization of water.</li><li>Define Boyle's and Charle's law. Prove PV = nRT.</li><li>On the basis of kinetic theory of gases, deduce the relation, P =<span class="MathJax CtxtMenu_Attached_0" data-original-attrs="{"ctxtmenu_counter":"2","jax":"CHTML","style":""}" data-original-tag="MJX-CONTAINER" tabindex="0" style="font-size: 19.04px; position: relative;"><span class="MJX-TEX" data-original-attrs="{"aria-hidden":"true"}" data-original-tag="MJX-MATH"><span data-original-tag="MJX-MFRAC"><span data-original-tag="MJX-FRAC"><span data-original-tag="MJX-NUM"><span data-original-tag="MJX-NSTRUT"></span><span class="mjx-n" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MN"><span class="mjx-c31" data-original-tag="MJX-C"></span></span></span><span data-original-tag="MJX-DBOX"><span data-original-tag="MJX-DTABLE"><span data-original-tag="MJX-LINE"></span><span data-original-tag="MJX-ROW"><span data-original-tag="MJX-DEN"><span data-original-tag="MJX-DSTRUT"></span><span class="mjx-n" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MN"><span class="mjx-c33" data-original-tag="MJX-C"></span></span></span></span></span></span></span></span><span class="mjx-i" data-original-tag="MJX-MI"><span class="mjx-c1D70C TEX-I" data-original-tag="MJX-C"></span></span><span data-original-attrs="{"texclass":"ORD"}" data-original-tag="MJX-TEXATOM"><span data-original-tag="MJX-MSUP"><span data-original-tag="MJX-MOVER"><span data-original-attrs="{"style":""}" data-original-tag="MJX-OVER" style="margin-bottom: -0.248em; padding-bottom: 0.18em;"><span class="mjx-n" data-original-tag="MJX-MO"><span class="mjx-c2013" data-original-tag="MJX-C"></span></span></span><span data-original-attrs="{"style":""}" data-original-tag="MJX-BASE" style="padding-left: 0.034em;"><span class="mjx-i" data-original-tag="MJX-MI"><span class="mjx-c1D450 TEX-I" data-original-tag="MJX-C"></span></span></span></span><span data-original-attrs="{"style":""}" data-original-tag="MJX-SCRIPT" style="vertical-align: 0.486em;"><span class="mjx-n" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MN"><span class="mjx-c32" data-original-tag="MJX-C"></span></span></span></span></span></span><span data-original-attrs="{"display":"inline","unselectable":"on"}" data-original-tag="MJX-ASSISTIVE-MML"><span data-original-attrs="{"xmlns":"http://www.w3.org/1998/Math/MathML"}" data-original-tag="MATH"><span data-original-tag="MFRAC"><span data-original-tag="MN">1</span><span data-original-tag="MN">3</span></span><span data-original-tag="MI">ρ</span><span data-original-attrs="{"data-mjx-texclass":"ORD"}" data-original-tag="MROW"><span data-original-tag="MSUP"><span data-original-tag="MOVER"><span data-original-tag="MI">c</span><span data-original-attrs="{"accent":"true"}" data-original-tag="MO">―</span></span><span data-original-tag="MN">2</span></span></span></span></span></span>, where the symbols have their usual meanings.</li><li>Starting from the relation P =<span class="MathJax CtxtMenu_Attached_0" data-original-attrs="{"ctxtmenu_counter":"3","jax":"CHTML","style":""}" data-original-tag="MJX-CONTAINER" tabindex="0" style="font-size: 19.04px; position: relative;"><span class="MJX-TEX" data-original-attrs="{"aria-hidden":"true"}" data-original-tag="MJX-MATH"><span data-original-tag="MJX-MFRAC"><span data-original-tag="MJX-FRAC"><span data-original-tag="MJX-NUM"><span data-original-tag="MJX-NSTRUT"></span><span class="mjx-n" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MN"><span class="mjx-c31" data-original-tag="MJX-C"></span></span></span><span data-original-tag="MJX-DBOX"><span data-original-tag="MJX-DTABLE"><span data-original-tag="MJX-LINE"></span><span data-original-tag="MJX-ROW"><span data-original-tag="MJX-DEN"><span data-original-tag="MJX-DSTRUT"></span><span class="mjx-n" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MN"><span class="mjx-c33" data-original-tag="MJX-C"></span></span></span></span></span></span></span></span><span class="mjx-i" data-original-tag="MJX-MI"><span class="mjx-c1D70C TEX-I" data-original-tag="MJX-C"></span></span><span data-original-attrs="{"texclass":"ORD"}" data-original-tag="MJX-TEXATOM"><span data-original-tag="MJX-MSUP"><span data-original-tag="MJX-MOVER"><span data-original-attrs="{"style":""}" data-original-tag="MJX-OVER" style="margin-bottom: -0.248em; padding-bottom: 0.18em;"><span class="mjx-n" data-original-tag="MJX-MO"><span class="mjx-c2013" data-original-tag="MJX-C"></span></span></span><span data-original-attrs="{"style":""}" data-original-tag="MJX-BASE" style="padding-left: 0.034em;"><span class="mjx-i" data-original-tag="MJX-MI"><span class="mjx-c1D450 TEX-I" data-original-tag="MJX-C"></span></span></span></span><span data-original-attrs="{"style":""}" data-original-tag="MJX-SCRIPT" style="vertical-align: 0.486em;"><span class="mjx-n" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MN"><span class="mjx-c32" data-original-tag="MJX-C"></span></span></span></span></span></span><span data-original-attrs="{"display":"inline","unselectable":"on"}" data-original-tag="MJX-ASSISTIVE-MML"><span data-original-attrs="{"xmlns":"http://www.w3.org/1998/Math/MathML"}" data-original-tag="MATH"><span data-original-tag="MFRAC"><span data-original-tag="MN">1</span><span data-original-tag="MN">3</span></span><span data-original-tag="MI">ρ</span><span data-original-attrs="{"data-mjx-texclass":"ORD"}" data-original-tag="MROW"><span data-original-tag="MSUP"><span data-original-tag="MOVER"><span data-original-tag="MI">c</span><span data-original-attrs="{"accent":"true"}" data-original-tag="MO">―</span></span><span data-original-tag="MN">2</span></span></span></span></span></span> in kinetic theory of gases, derive Boyle’s law and Charle’s law and ideal gas equation.</li><li>Define the coefficient of thermal conductivity. Describe Searle’s method of determination of thermal conductivity of a good conductor.</li><li>What do you mean by perfectly black body? State and explain Stefan’s law of black body radiation.</li></ol><h1 data-original-attrs="{"style":""}" id="Ray_Optics" style="text-align: center;"><b>Ray Optics</b></h1><p class="MsoNormal" data-original-attrs="{"style":""}" style="text-align: justify;"></p><ol><li>How will you make difference between real and virtual images? Obtain an expression for the relation between object distance, image distance and the focal length in case of convex mirror.</li><li>Prove that <span class="MathJax CtxtMenu_Attached_0" data-original-attrs="{"ctxtmenu_counter":"4","jax":"CHTML","style":""}" data-original-tag="MJX-CONTAINER" tabindex="0" style="font-size: 19.04px; position: relative;"><span class="MJX-TEX" data-original-attrs="{"aria-hidden":"true"}" data-original-tag="MJX-MATH"><span data-original-tag="MJX-MFRAC"><span data-original-tag="MJX-FRAC"><span data-original-tag="MJX-NUM"><span data-original-tag="MJX-NSTRUT"></span><span class="mjx-n" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MN"><span class="mjx-c31" data-original-tag="MJX-C"></span></span></span><span data-original-tag="MJX-DBOX"><span data-original-tag="MJX-DTABLE"><span data-original-tag="MJX-LINE"></span><span data-original-tag="MJX-ROW"><span data-original-tag="MJX-DEN"><span data-original-tag="MJX-DSTRUT"></span><span class="mjx-i" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MI"><span class="mjx-c1D453 TEX-I" data-original-tag="MJX-C"></span></span></span></span></span></span></span></span><span class="mjx-n" data-original-attrs="{"space":"4"}" data-original-tag="MJX-MO"><span class="mjx-c3D" data-original-tag="MJX-C"></span></span><span data-original-attrs="{"space":"4"}" data-original-tag="MJX-MFRAC"><span data-original-tag="MJX-FRAC"><span data-original-tag="MJX-NUM"><span data-original-tag="MJX-NSTRUT"></span><span class="mjx-n" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MN"><span class="mjx-c31" data-original-tag="MJX-C"></span></span></span><span data-original-tag="MJX-DBOX"><span data-original-tag="MJX-DTABLE"><span data-original-tag="MJX-LINE"></span><span data-original-tag="MJX-ROW"><span data-original-tag="MJX-DEN"><span data-original-tag="MJX-DSTRUT"></span><span class="mjx-i" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MI"><span class="mjx-c1D462 TEX-I" data-original-tag="MJX-C"></span></span></span></span></span></span></span></span><span class="mjx-n" data-original-attrs="{"space":"3"}" data-original-tag="MJX-MO"><span class="mjx-c2B" data-original-tag="MJX-C"></span></span><span data-original-attrs="{"space":"3"}" data-original-tag="MJX-MFRAC"><span data-original-tag="MJX-FRAC"><span data-original-tag="MJX-NUM"><span data-original-tag="MJX-NSTRUT"></span><span class="mjx-n" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MN"><span class="mjx-c31" data-original-tag="MJX-C"></span></span></span><span data-original-tag="MJX-DBOX"><span data-original-tag="MJX-DTABLE"><span data-original-tag="MJX-LINE"></span><span data-original-tag="MJX-ROW"><span data-original-tag="MJX-DEN"><span data-original-tag="MJX-DSTRUT"></span><span class="mjx-i" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MI"><span class="mjx-c1D463 TEX-I" data-original-tag="MJX-C"></span></span></span></span></span></span></span></span></span><span data-original-attrs="{"display":"inline","unselectable":"on"}" data-original-tag="MJX-ASSISTIVE-MML"><span data-original-attrs="{"xmlns":"http://www.w3.org/1998/Math/MathML"}" data-original-tag="MATH"><span data-original-tag="MFRAC"><span data-original-tag="MN">1</span><span data-original-tag="MI">f</span></span><span data-original-tag="MO">=</span><span data-original-tag="MFRAC"><span data-original-tag="MN">1</span><span data-original-tag="MI">u</span></span><span data-original-tag="MO">+</span><span data-original-tag="MFRAC"><span data-original-tag="MN">1</span><span data-original-tag="MI">v</span></span></span></span></span>, for concave mirror when image formed is virtual / real where u, v and f have usual meanings.</li><li>What is lateral shift? Derive an expression for its value. How does the lateral shift change with the increase in the angle of incidence?</li><li>What do you mean by minimum deviation of light when passing through a prism? Show that the deviation produced by a small angle prism is independence of angle of incidence.</li><li>Show that <font data-keep-original-tag="false" data-original-attrs="{"style":"mso-ascii-font-family: Calibri; mso-ascii-theme-font: minor-latin; mso-char-type: symbol; mso-hansi-font-family: Calibri; mso-hansi-theme-font: minor-latin; mso-symbol-font-family: Symbol;"}" face="Symbol">m</font>=<span class="MathJax CtxtMenu_Attached_0" data-original-attrs="{"ctxtmenu_counter":"5","jax":"CHTML","style":""}" data-original-tag="MJX-CONTAINER" tabindex="0" style="font-size: 19.04px; position: relative;"><span class="MJX-TEX" data-original-attrs="{"aria-hidden":"true"}" data-original-tag="MJX-MATH"><span data-original-tag="MJX-MFRAC"><span data-original-tag="MJX-FRAC"><span data-original-tag="MJX-NUM"><span data-original-tag="MJX-NSTRUT"></span><span data-original-attrs="{"size":"s","texclass":"ORD"}" data-original-tag="MJX-TEXATOM"><span class="mjx-n" data-original-tag="MJX-MI"><span class="mjx-c73" data-original-tag="MJX-C"></span><span class="mjx-c69" data-original-tag="MJX-C"></span><span class="mjx-c6E" data-original-tag="MJX-C"></span></span><span class="mjx-n" data-original-tag="MJX-MO"><span class="mjx-c2061" data-original-tag="MJX-C"></span></span><span data-original-tag="MJX-MROW"><span class="mjx-lop" data-original-tag="MJX-MO"><span class="mjx-c28 TEX-S2" data-original-tag="MJX-C"></span></span><span data-original-attrs="{"texclass":"ORD"}" data-original-tag="MJX-TEXATOM"><span data-original-tag="MJX-MFRAC"><span data-original-tag="MJX-FRAC"><span data-original-tag="MJX-NUM"><span data-original-tag="MJX-NSTRUT"></span><span data-original-attrs="{"size":"s","texclass":"ORD"}" data-original-tag="MJX-TEXATOM"><span class="mjx-i" data-original-tag="MJX-MI"><span class="mjx-c1D434 TEX-I" data-original-tag="MJX-C"></span></span><span class="mjx-n" data-original-tag="MJX-MO"><span class="mjx-c2B" data-original-tag="MJX-C"></span></span><span data-original-attrs="{"texclass":"ORD"}" data-original-tag="MJX-TEXATOM"><span data-original-tag="MJX-MSUB"><span class="mjx-i" data-original-tag="MJX-MI"><span class="mjx-c1D437 TEX-I" data-original-tag="MJX-C"></span></span><span data-original-attrs="{"style":""}" data-original-tag="MJX-SCRIPT" style="vertical-align: -0.15em;"><span class="mjx-i" data-original-tag="MJX-MI"><span class="mjx-c1D45A TEX-I" data-original-tag="MJX-C"></span></span></span></span></span></span></span><span data-original-tag="MJX-DBOX"><span data-original-tag="MJX-DTABLE"><span data-original-tag="MJX-LINE"></span><span data-original-tag="MJX-ROW"><span data-original-tag="MJX-DEN"><span data-original-tag="MJX-DSTRUT"></span><span class="mjx-n" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MN"><span class="mjx-c32" data-original-tag="MJX-C"></span></span></span></span></span></span></span></span></span><span class="mjx-lop" data-original-tag="MJX-MO"><span class="mjx-c29 TEX-S2" data-original-tag="MJX-C"></span></span></span></span></span><span data-original-tag="MJX-DBOX"><span data-original-tag="MJX-DTABLE"><span data-original-tag="MJX-LINE"></span><span data-original-tag="MJX-ROW"><span data-original-tag="MJX-DEN"><span data-original-tag="MJX-DSTRUT"></span><span data-original-attrs="{"size":"s","texclass":"ORD"}" data-original-tag="MJX-TEXATOM"><span class="mjx-i" data-original-tag="MJX-MI"><span class="mjx-c1D456 TEX-I" data-original-tag="MJX-C"></span></span><span class="mjx-i" data-original-tag="MJX-MI"><span class="mjx-c1D45B TEX-I" data-original-tag="MJX-C"></span></span><span data-original-tag="MJX-MROW"><span class="mjx-sop" data-original-tag="MJX-MO"><span class="mjx-c28 TEX-S1" data-original-tag="MJX-C"></span></span><span data-original-attrs="{"texclass":"ORD"}" data-original-tag="MJX-TEXATOM"><span data-original-tag="MJX-MFRAC"><span data-original-tag="MJX-FRAC"><span data-original-tag="MJX-NUM"><span data-original-tag="MJX-NSTRUT"></span><span class="mjx-i" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MI"><span class="mjx-c1D434 TEX-I" data-original-tag="MJX-C"></span></span></span><span data-original-tag="MJX-DBOX"><span data-original-tag="MJX-DTABLE"><span data-original-tag="MJX-LINE"></span><span data-original-tag="MJX-ROW"><span data-original-tag="MJX-DEN"><span data-original-tag="MJX-DSTRUT"></span><span class="mjx-n" data-original-attrs="{"size":"s"}" data-original-tag="MJX-MN"><span class="mjx-c32" data-original-tag="MJX-C"></span></span></span></span></span></span></span></span></span><span class="mjx-sop" data-original-tag="MJX-MO"><span class="mjx-c29 TEX-S1" data-original-tag="MJX-C"></span></span></span></span></span></span></span></span></span></span></span><span data-original-attrs="{"display":"inline","unselectable":"on"}" data-original-tag="MJX-ASSISTIVE-MML"><span data-original-attrs="{"xmlns":"http://www.w3.org/1998/Math/MathML"}" data-original-tag="MATH"><span data-original-tag="MFRAC"><span data-original-attrs="{"data-mjx-texclass":"ORD"}" data-original-tag="MROW"><span data-original-tag="MI">sin</span><span data-original-attrs="{"data-mjx-texclass":"NONE"}" data-original-tag="MO"></span><span data-original-attrs="{"data-mjx-texclass":"INNER"}" data-original-tag="MROW"><span data-original-attrs="{"data-mjx-texclass":"OPEN"}" data-original-tag="MO">(</span><span data-original-attrs="{"data-mjx-texclass":"ORD"}" data-original-tag="MROW"><span data-original-tag="MFRAC"><span data-original-attrs="{"data-mjx-texclass":"ORD"}" data-original-tag="MROW"><span data-original-tag="MI">A</span><span data-original-tag="MO">+</span><span data-original-attrs="{"data-mjx-texclass":"ORD"}" data-original-tag="MROW"><span data-original-tag="MSUB"><span data-original-tag="MI">D</span><span data-original-tag="MI">m</span></span></span></span><span data-original-tag="MN">2</span></span></span><span data-original-attrs="{"data-mjx-texclass":"CLOSE"}" data-original-tag="MO">)</span></span></span><span data-original-attrs="{"data-mjx-texclass":"ORD"}" data-original-tag="MROW"><span data-original-tag="MI">i</span><span data-original-tag="MI">n</span><span data-original-attrs="{"data-mjx-texclass":"INNER"}" data-original-tag="MROW"><span data-original-attrs="{"data-mjx-texclass":"OPEN"}" data-original-tag="MO">(</span><span data-original-attrs="{"data-mjx-texclass":"ORD"}" data-original-tag="MROW"><span data-original-tag="MFRAC"><span data-original-tag="MI">A</span><span data-original-tag="MN">2</span></span></span><span data-original-attrs="{"data-mjx-texclass":"CLOSE"}" data-original-tag="MO">)</span></span></span></span></span></span></span> , for a prism Where the notations carry their usual meanings.</li><li>Derive lens maker's formula and write unit of the power of a lens.</li><li>Define an expression for combined focal length when two thin lenses are combined coaxially.</li><li>What is chromatic aberration? Show that for a lens, the chromatic aberration is the product of dispersive power and focal length of mean light.</li><li>Define achromatism and derive an expression for the condition of achromatic combination of two thin lenses in contact.</li></ol><h1 data-original-attrs="{"style":""}" id="Electrostatics" style="text-align: center;"><b>Electrostatics</b></h1><p class="MsoNormal" data-original-attrs="{"style":""}" style="text-align: justify;"></p><ol><li>What is electrostatic Induction? How can you charge a given Sphere positively by the method of Induction?</li><li>What is an electric potential? Derive the formula for the potential at a point due to a point charge.</li><li>State Gauss’s Theorem is electrostatics and uses it to find the electric field intensity due to hollow charged spherical conductor?</li><li>State and explain Gauss law of electrostatics. Apply it to obtain an expression for electric field of a linearly charged body?</li><li>State Gauss law. Use it to find the electric field due to an infinite thin plan metallic sheet.</li><li>Define potential gradient. Derive a relation between electric field intensity and potential gradient.</li><li>Define electric potential. Derive an expression for the potential difference formula and hence obtain the potential at point due to a point charge.</li><li>What do you mean by the term capacitance? Find the equivalent capacitance of two capacitor, when they are connected in i) series ii) parallel</li><li>Define capacitance of a capacitor. Deduce an expression for the capacitance of a parallel plate capacitor.</li><li>What is a capacitor? Find an expression for the energy stored in a charged capacitor.</li></ol></div>
© 2025 NEB Resource. All rights reserved. Content is protected and may not be copied without permission.